quasi-complemented lattice - définition. Qu'est-ce que quasi-complemented lattice
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est quasi-complemented lattice - définition

Relatively complemented lattice; Relatively complemented; Ortholattice; Orthocomplemented lattice; Orthocomplement; Orthocomplementation; Orthomodular lattice; Orthomodular lattices
  • l}}.

Complemented lattice         
In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e.
Lattice QCD         
QUANTUM CHROMODYNAMICS ON A LATTICE
QCD lattice model; Lattice qcd; Lattice quantum chromodynamics; Lattice Quantum Chromodynamics; Lattice chromodynamics; LQCD
Lattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time.
Bravais lattice         
  • Oblique
  • Oblique
  • Oblique
  • Oblique
  • Oblique
  • Monoclinic, centered
  • Cubic, body-centered
  • Cubic, face-centered
  • Cubic, simple
  • Hexagonal
  • Monoclinic, simple
  • Orthorhombic, base-centered
  • Orthorhombic, body-centered
  • Orthorhombic, face-centered
  • Orthorhombic, simple
  • Rhombohedral
  • Tetragonal, body-centered
  • Tetragonal, simple
  • Triclinic
AN INFINITE ARRAY OF DISCRETE POINTS IN THREE DIMENSIONAL SPACE GENERATED BY A SET OF DISCRETE TRANSLATION OPERATIONS
Crystal lattice; Bravais lattices; Bravais Lattices; Crystalline lattice; Space lattice; Crystallographic lattice; Bravais flock; Crystal lattices
In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by

Wikipédia

Complemented lattice

In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0. Complements need not be unique.

A relatively complemented lattice is a lattice such that every interval [cd], viewed as a bounded lattice in its own right, is a complemented lattice.

An orthocomplementation on a complemented lattice is an involution that is order-reversing and maps each element to a complement. An orthocomplemented lattice satisfying a weak form of the modular law is called an orthomodular lattice.

In distributive lattices, complements are unique. Every complemented distributive lattice has a unique orthocomplementation and is in fact a Boolean algebra.